Abstract

Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined “lock-in feedback” which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist’s experimental toolbox and we explicitly discuss a number of future applications.

Highlights

  • Social science experiments are often affected by large measurement errors [1]

  • We show that, likewise, the method rudimentarily proposed in [23], which we dubbed as “lock-in feedback” (LiF), can be extended to cover a much broader range of social science experiments than that explored in our first test

  • To demonstrate the enabling features of LiF in this context, we selected a topic of study in which heterogeneity and noise abound: we studied the subjective perception of beauty over multiple participants [29, 30]

Read more

Summary

Introduction

The effects under study are complex [2] and the results of the experiments largely depend on the experimental context [3] or on the particular group of people under study [4]. Due to this complex nature of human behavior, even experiments demonstrating some of the most compelling principles of human decision making have proven difficult to replicate when conditions undergo minor changes or when researchers leave the confines of their laboratories [5, 6]. Considerable work has been devoted to optimally choosing possible treatment

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.