Abstract

Plant pathogens transmitted by insect vectors can have devastating consequences for farmers across the globe. Huanglongbing disease of citrus trees and zebra chip disease of potatoes are both caused by bacteria transmitted by specific psyllid insect species, and have the potential to destroy entire crops, causing enormous economic losses. Conventional control methods rely on pesticides, but these can have adverse effects on the environment. In addition, resistance to these chemicals is on the rise in many pest species. Dr Bryce Falk and his plant pathology team at the University of California, Davis aim to solve this problem by developing highly targeted psyllid control methods using virus-based gene technologies. Both diabetic adults and premature babies are at risk for a similar type of eye disease that involves the growth of abnormal, blood vessels in the retina, the photosensitive layer of the eye. When this eye disease occurs in diabetics, it is called diabetic retinopathy and when it occurs in premature infants, it is called retinopathy of prematurity. The pathologic vessels, seen in both of these diseases, can pull on the retina and cause it to detach, leading to blindness. Dr Tammy Movsas (Executive Director and Principal Investigator) and Dr Arivalagan Muthusamy (Chief Scientist) at the Zietchick Research Institute, USA, are developing new therapeutics to treat these serious retinal diseases that affect both premature baby eyes and mature adult eyes, such as those of diabetic women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call