Abstract
Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.