Abstract

This paper applies causal machine learning methods to analyze the heterogeneous regional impacts of monetary policy in China. The method uncovers the heterogeneous regional im-pacts of different monetary policy stances on the provincial figures for real GDP growth, CPI inflation and loan growth compared to the national averages. The varying effects of expansionary and contractionary monetary policy phases on Chinese provinces are highlighted and explained. Subsequently, applying interpretable machine learning, the empirical results show that the credit channel is the main channel affecting the regional impacts of monetary policy. An imminent conclusion of the uneven provincial responses to the “one size fits all” monetary policy is that different policymakers should coordinate their efforts to search for the optimal fiscal and monetary policy mix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.