Abstract
The asexual form of Ophiocordyceps sinensis has been controversial, but various morphologic mycelium appeared when O. sinensis was cultured under experimental conditions. To explore the generation mechanism of morphologic mycelium, developmental transcriptomes were analyzed from three kinds of mycelium (aerial mycelium, hyphae knot, and substrate mycelium). The results showed that diameter and morphology of these three kinds of mycelium were obviously different. KEGG functional enrichment analysis showed that the differential expressed genes (DEGs) of substrate mycelium were enriched in ribosomes and peroxisomes, indicating that prophase culture was rich in nutrients and the metabolism of substrate mycelium cells was vigorous in the stage of nutrient absorption. The up-DEGs of hyphae knot were mainly enriched in the oxidative phosphorylation pathway, indicating that oxidative phosphorylation was the main energy source for mycelium formation in the stage of nutrient accumulation and reproductive transformation. The up-DEGs of aerial mycelium were mainly enriched in the synthesis and degradation pathways of valine, leucine, and isoleucine, suggesting that the occurrence of aerial mycelium was related to amino acid metabolism at the later stage of culture, and nutritional stress accelerated the reproduction of asexual spores. In addition, the important roles of mycelium formation related genes were verified by combined analysis of qRT-PCR and transcriptome sequencing. Collectively, this study will provide theoretical guidance for inhibiting the occurrence of aerogenous mycelium and promoting the development of mycelium into pinhead primordia in the culture of O. sinensis in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.