Abstract

Unmanned Autonomous Vehicle (UAV) or drones are increasingly used across diverse application areas. Uncooperative drones do not announce their identity/flight plans and can pose a potential risk to critical infrastructures. Understanding drone’s intention is important to assigning risk and executing countermeasures. Intentions are often intangible and unobservable, and a variety of tangible intention classes are often inferred as a proxy. However, inference of drone intention classes using observational data alone is inherently unreliable due to observational and learning bias. Here, we developed a control-physics informed machine learning (CPhy-ML) that can robustly infer across intention classes. The CPhy-ML couples the representation power of deep learning with the conservation laws of aerospace models to reduce bias and instability. The CPhy-ML achieves a 48.28% performance improvement over traditional trajectory prediction methods. The reward inference results outperforms conventional inverse reinforcement learning approaches, decreasing the root mean squared spectral norm error from 3.3747 to 0.3229.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.