Abstract

It has long been recognized that visible light harvesting in Peridinin-Chlorophyll-Protein is driven by the interplay between the bright (S2) and dark (S1) states of peridinin (carotenoid), along with the lowest-lying bright (Qy) and dark (Qx) states of chlorophyll-a. Here, we analyse a chromophore cluster in the crystal structure of Peridinin-Chlorophyll-Protein, in particular, a peridinin-peridinin and a peridinin-chlorophyll-a dimer, and present quantum chemical evidence for excited states that exist beyond the confines of single peridinin and chlorophyll chromophores. These dark multichromophoric states, emanating from the intermolecular packing native to Peridinin-Chlorophyll-Protein, include a correlated triplet pair comprising neighbouring peridinin excitations and a charge-transfer interaction between peridinin and the adjacent chlorophyll-a. We surmise that such dark multichromophoric states may explain two spectral mysteries in light-harvesting pigments: the sub-200-fs singlet fission observed in carotenoid aggregates, and the sub-200-fs chlorophyll-a hole generation in Peridinin-Chlorophyll-Protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call