Abstract

Recent trends in software-defined networking have extended network programmability to the data plane through programming languages such as P4. Unfortunately, the chance of introducing bugs in the network also increases significantly in this new context. Existing data plane verification approaches are unable to model P4 programs, or they present severe restrictions in the set of properties that can be modeled. In this paper, we introduce a data plane program verification approach based on assertion checking and symbolic execution. Network programmers annotate P4 programs with assertions expressing general security and correctness properties. Once annotated, these programs are transformed into C-based models and all their possible paths are symbolically executed. Results show that the proposed approach, called ASSERT-P4, can uncover a broad range of bugs and software flaws. Furthermore, experimental evaluation shows that it takes less than a minute for verifying various P4 applications proposed in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.