Abstract
Influenza viruses are a cause of large outbreaks and pandemics with high death tolls. A key obstacle is that flu vaccines have inconsistent performance, in the best cases up to 60% effectiveness, but it can be as low as 10%. Uncovering the hidden pathways of how antibodies (Abs) induced by one influenza strain are effective against another, cross-reaction, is a central vexation for the design of universal flu vaccines. We conceive a stochastic model that successfully represents the antibody cross-reactive data from mice infected with H3N2 influenza strains and further validation with cross-reaction data of H1N1 strains. Using a High-Performance Computing cluster, several aspects and parameters in the model were tested. Computational simulations highlight that changes in time of infection and the B-cells population are relevant, however, the affinity threshold of B-cells between consecutive infections is a necessary condition for the successful Abs cross-reaction. Our results suggest a 3-D reformulation of the current influenza antibody landscape for the representation and modeling of cross-reactive data. The full code as a testing/simulation platform is freely available here: https://github.com/systemsmedicine/Antibody_cross-reaction_dynamics. Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.