Abstract

BackgroundActivation of the Wnt pathway has been linked to colorectal cancer (CRC). Previous reports suggest that Wnt3a can activate p38. Besides, p38α feeds into the canonical Wnt/β-catenin pathway by inhibiting GSK3β through phosphorylation. Recently, we identified p38α as a new druggable member of β-catenin chromatin-associated kinase complexes in CRC.MethodsThe functional relationship between p38α and β-catenin was characterized in CRC cells, patient-derived CRC stem cells, patient-derived tumor intestinal organoids, and in vivo models (C57BL/6-APCMin/+ mice). The role of p38α in β-catenin transcriptional activity was assessed by pharmacological inhibition with ralimetinib.ResultsWe used the GSK3β inhibitor TWS-119, which promotes the activation of Wnt signaling, to uncouple p38α nuclear/cytoplasmatic functions in the Wnt pathway. Upon GSK3β inhibition, nuclear p38α phosphorylates β-catenin at residues S111 and T112, allowing its binding to promoter regions of Wnt target genes and the activation of a transcriptional program implicated in cancer progression. If p38α is pharmacologically inhibited in addition to GSK3β, β-catenin is prevented from promoting target gene transcription, which is expected to impair carcinogenesis.Conclusionsp38α seems to play a dual role as a member of the β-catenin destruction complex and as a β-catenin chromatin-associated kinase in CRC. This finding may help elucidate mechanisms contributing to human colon tumor pathogenesis and devise new strategies for personalized CRC treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call