Abstract
In many forms of experimental kidney diseases, renal VEGF is low, and administering VEGF can be shown to be protective. A paradox occurs in diabetes, in which renal VEGF levels are high and a deleterious effect of VEGF on kidney disease has been shown. We have hypothesized that endothelial dysfunction induced by hyperglycemia or other factors may underlie the pathogenic mechanisms of a high VEGF state. VEGF normally stimulates endothelial nitric oxide (NO) release and acts in concert with elevated NO levels as a trophic factor for vascular endothelium. The increased NO derived from the endothelial cell acts as an inhibitory factor that prevents excess endothelial cell proliferation, vascular smooth muscle cell proliferation, and macrophage infiltration. In the setting where NO bioavailability is reduced in diabetes, high levels of VEGF lead to excessive endothelial cell proliferation, stimulation of macrophage chemotaxis, and vascular smooth muscle cell activation. Consistent with this hypothesis is our recent observation that diabetes induced in endothelial NO-deficient mice results in clinical and histological features identical to human diabetic nephropathy. The discovery of the key role for impaired endothelial NO bioavailability in the stimulation of VEGF and VEGF-dependent disease may provide key insights into not only the pathogenesis of diabetic nephropathy but also the utility and hazard of administering VEGF as a treatment for kidney disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.