Abstract

In the yeast Saccharomyces cerevisiae inactivation of trehalose-6-phosphate (Tre6P) synthase (Tps1) encoded by the TPS1 gene causes a specific growth defect in the presence of glucose in the medium. The growth inhibition is associated with deregulation of the initial part of glycolysis. Sugar phosphates, especially fructose-1,6-bisphosphate (Fru1,6bisP), hyperaccumulate while the levels of ATP, Pi and downstream metabolites are rapidly depleted. This was suggested to be due to the absence of Tre6P inhibition on hexokinase. Here we show that overexpression of Tre6P (as well as glucose-6-phosphate (Glu6P))-insensitive hexokinase from Schizosaccharomyces pombe in a wild-type strain does not affect growth on glucose but still transiently enhances initial sugar phosphate accumulation. We have in addition replaced the three endogenous glucose kinases of S. cerevisiae by the Tre6P-insensitive hexokinase from S. pombe. High hexokinase activity was measured in cell extracts and growth on glucose was somewhat reduced compared to an S. cerevisiae wild-type strain but expression of the Tre6P-insensitive S. pombe hexokinase never caused the typical tps1Δ phenotype. Moreover, deletion of TPS1 in this strain expressing only the Tre6P-insensitive S. pombe hexokinase still resulted in a severe drop in growth capacity on glucose as well as sensitivity to millimolar glucose levels in the presence of excess galactose. In this case, poor growth on glucose was associated with reduced rather than enhanced glucose influx into glycolysis. Initial glucose transport was not affected. Apparently, deletion of TPS1 causes reduced activity of the S. pombe hexokinase in vivo. Our results show that Tre6P inhibition of hexokinase is not the major mechanism by which Tps1 controls the influx of glucose into glycolysis or the capacity to grow on glucose. In addition, they show that a Tre6P-insensitive hexokinase can still be controlled by Tps1 in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.