Abstract
Mice in which the gene for mdr2 P-glycoprotein has been disrupted have a severe deficiency in biliary phospholipid and cholesterol secretion. We studied the relation between mdr2 gene expression and biliary lipid secretion with emphasis on the role of bile salt hydrophobicity. Control mice (+/+), and mice with a homozygous (-/-) or heterozygous (+/-) disruption of the mdr2 gene, were infused with taurodeoxycholate (TDC) or tauroursodeoxycholate (TUDC). In mdr2 (-/-) mice, virtually no phospholipids were secreted into bile, irrespective of the type of bile salt infused. In contrast, cholesterol secretion in (-/-) mice increased upon TDC infusion from less than 0.1 to more than 2 nmol/min . 100 g, which was similar to controls under the same conditions. After infusion of TUDC in (-/-) mice. cholesterol secretion also rose (to 1.8 nmol/min . 100 g) but remained much lower than in controls (8 nmol/min x 100 g). In (+/-) mice, cholesterol secretion was equal to (+/+) mice during secretion of endogenous bile salts and during TDC infusion, but was 50% of control levels during maximal TUDC infusion. We conclude that biliary phospholipid secretion completely depends on mdr2 gene expression but cholesterol can, at least partially, be secreted in an mdr2 Pgp-independent mechanism. The extent to which cholesterol is secreted via this mechanism may depend on the hydrophobicity (i.e., cholesterol-solubilizing capacity) of the secreted bile salt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.