Abstract

Diamond deposits of well-separated particles have been obtained by the hot filament CVD technique on Si(100) wafers. Particle counting in SEM images and determination of their linear dimensions require a separate study of growth rates and of nucleation densities as a function of time, substrate temperature (500 °C–950 °C), gas phase composition (0.5–2% CH4 in H2), and total pressure (15–76 Torr). It is shown that recent models proposed for the growth process can successfully be applied if proper consideration is given to the high catalytic activity of the growing diamond surface for the heterogeneous recombination of gaseous H-atoms. This fast reaction controls the H-atom concentration at the surface and couples growth rates and nucleation densities via the gas phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.