Abstract
Cell shrinkage, or the loss of cell volume, is a ubiquitous characteristic of programmed cell death that is observed in all examples of apoptosis, independent of the death stimulus. This decrease in cell volume occurs in synchrony with other classical features of apoptosis. The molecular basis for cell shrinkage during apoptosis involves fluxes of intracellular ions including K+, Na+, and Cl-. Here we show for the first time that these ion fluxes, but not cell shrinkage, are necessary for apoptosis. Using sodium-substituted medium during anti-Fas treatment of Jurkat cells, we observed cellular swelling, a property normally associated with necrosis, in contrast to the typical cell shrinkage. Surprisingly, these swollen cells displayed all of the other classical features of apoptosis, including chromatin condensation, externalization of phosphatidylserine, caspase activity, poly(ADP)-ribose polymerase cleavage, and internucleosomal DNA degradation. These swollen cells had a marked decrease in intracellular potassium, and subsequent inhibition of this potassium loss completely blocked apoptosis. Reintroduction of sodium ions in cell cultures reversed this cellular swelling, resulting in a dramatic loss of cell volume and the characteristic apoptotic morphology. Additionally, inhibition of sodium influx using a sodium channel blocker saxitoxin completely prevented the onset of anti-Fas-induced apoptosis in Jurkat cells. These findings suggest that sodium influx can control not only changes in cell size but also the activation of apoptosis, whereas potassium ion loss controls the progression of the cell death process. Therefore cell shrinkage can be separated from other features of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.