Abstract

The suggestion that brassinosteroids (BRs) have a negative regulatory role in de-etiolation is based largely on correlative evidence, which includes the de-etiolated phenotypes of, and increased expression of light-regulated genes in, dark-grown mutants defective in BR biosynthesis or response. However, we have obtained the first direct evidence which shows that endogenous BR levels in light-grown pea seedlings are increased, not decreased, in comparison with those grown in the dark. Similarly, we found no evidence of a decrease in castasterone (CS) levels in seedlings that were transferred from the dark to the light for 24 h. Furthermore, CS levels in the constitutively de-etiolated lip1 mutant are similar to those in wild-type plants, and are not reduced as is the case in the BR-deficient lkb plants. Unlike lip1, the pea BR-deficient mutants lk and lkb are not de-etiolated at the morphological or molecular level, as they exhibit neither a de-etiolated phenotype or altered expression of light-regulated genes when grown in the dark. Similarly, dark-grown WT plants treated with the BR biosynthesis inhibitor, Brz, do not exhibit a de-etiolated phenotype. In addition, analysis of the lip1lkb double mutant revealed an additive phenotype indicative of the two genes acting in independent pathways. Together these results strongly suggest that BR levels do not play a negative-regulatory role in de-etiolation in pea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.