Abstract
Avian basal metabolic rate (BMR) and summit metabolic rate (Msum) vary in parallel during cold acclimation and acclimatization, which implies a functional link between these variables. However, evidence suggests that these parameters may reflect different physiological systems acting independently. We tested this hypothesis in white-throated sparrows (Zonotrichia albicollis) acclimated to two temperatures (-8° and 28°C) and two diets (0% and 30% cellulose). We expected to find an uncoupling of Msum and BMR where Msum, a measure of maximal shivering heat production, would reflect muscle and heart mass variation and would respond only to temperature, while BMR would reflect changes in digestive and excretory organs in response to daily food intake, responding to both temperature and diet. We found that the gizzard, liver, kidneys, and intestines responded to treatments through a positive relationship with food intake. BMR was 15% higher in cold-acclimated birds and, as expected, varied with food intake and the mass of digestive and excretory organs. In contrast, although Msum was 19% higher in cold-acclimated birds, only heart mass responded to temperature (+18% in the cold). Pectoral muscles did not change in mass with temperature but were 8.2% lighter on the cellulose diet. Nevertheless, Msum varied positively with the mass of heart and skeletal muscles but only in cold-acclimated birds. Our results therefore suggest that an upregulation of muscle metabolic intensity is required for cold acclimation. This study increases support for the hypothesis that BMR and Msum reflect different physiological systems responding in parallel to constraints associated with cold environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.