Abstract

Left-handed materials have superlensing effects that enable them to surmount the optical diffraction limit. A photonic crystal is able to mimic some properties of all-angle left-landed materials. In this study, the all-angle negative refraction criteria of photonic crystals are evaluated. The MIT Photonic-Bands program is employed to calculate the band structure of walled honeycomb photonic crystals, and the finite-difference time-domain method is used to provide a snapshot of the electric field distribution inside and outside the honeycomb photonic crystals. The results indicate that the all-angle negative refraction phenomena of the honeycomb photonic crystals are correlated with the orientation of the photonic crystals. Furthermore, the role of the uncoupled modes varies based on their orientation to the all-angle negative refraction photonic crystals, in one case assisting negative refraction and in the other case preventing it. The results suggest that symmetric properties should not be ignored when considering the negative refraction of photonic crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call