Abstract

The effects of three uncoupled metabolic systems (conventional activated sludge process with the addition of 3,3', 4',5-tetrachlorosalicylanilide [TCS], oxic-settling-anaerobic [OSA] process modified by insertion of a sludge-holding tank in the sludge return line, and TCS and OSA combined process) on reducing excess sludge production were studied. Compared with the control conventional activated sludge process, the most effective system was the combined process, which could reduce excess sludge production by 46.90%. The 180-d operation results confirmed that TCS is an effective chemical uncoupler in reducing the sludge yield but that it had an adverse effect on substrate removal capability, effluent nitrogen concentration, and sludge settleability. The OSA process decreased excess sludge production by only 26% but had less adverse effect on effluent quality and could improve sludge settleability. The effluent total phosphorous concentration of the three systems was slightly lower than of the control unit. Microbial populations were monitored by both microscopic and molecular biologic analysis method (polymerase chain reaction [PCR]-denaturing gradient gel electrophoresis [DGGE]). The presence of TCS caused metazoans to disappear and decreased the number and activity of protozoa. PCR amplification of 16S rRNA and sequent DGGE analysis found a shift in the diversity of the predominant species. The results imply that OSA combined with the chemical uncoupler process may effectively reduce excess sludge yield and not affect process performance significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call