Abstract

Structural changes in phytoplankton communities have large influence on marine elemental cycling, food web dynamics and carbon export. Here we used data from two field expeditions, performed in spring and fall, over a coast-offshore gradient to investigate phytoplankton structure and dynamics in the Southwestern Tropical Atlantic (SWTA). Results revealed a predominant role of the thermohaline structure as the main driver of phytoplankton dynamics regardless the season. In fall, the thermocline and nutricline shallowing promoted a biomass increase, which was 3-fold higher around the oceanic islands. The structure of phytoplankton community mainly varied vertically, with Prochlorococcus pigments contributing greatly to the higher nutrient Deep Chlorophyll Maximum, whereas other Cyanophyceae predominated in nutrient poor surface layers during the two seasons. In addition, a clear coast-offshore variability in the new production ( Fp ) was observed, with the shelf region displaying higher values (up to 0.21), promoted by larger Bacillariophyceae pigments concentration, thus suggesting a coastal influence on shelf production. Although the phytoplankton biomass increased seasonally, our results highlighted a predominance of recycled production ( Fp ) and uncoupled dynamics between biomass and size of phytoplankton structure, with pico- and nanophytoplankton dominating the relative biomass, i.e., ca. 80% of the community in both seasons. We hypothesize that these patterns may result from a strong nitrogen limitation (N:P of around 3:1), which likely constrain a pronounced growth of the microphytoplankton. • Uncoupled dynamics between phytoplankton size structure and biomass were revealed. • A decreasing gradient of biomass and new production from shelf to offshore was pointed out. • Seasonal changes in thermocline shape the phytoplankton dynamics and size structure. • Phytoplankton diversity increased with depth, but was mainly dominated by small cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.