Abstract

The heterogenous expression of brush border membrane hydrolases by the human enterocyte-like Caco-2 cell line during morphological and functional differentiation in vitro was investigated at the cellular level. Indirect immunofluorescence revealed that the heterogeneous ("mosaic") expression of sucrase-isomaltase, lactase, aminopeptidase N, and alkaline phosphatase was, in fact, transient in nature. The labeling indexes for each hydrolase gradually increased during culture at postconfluence in order to reach a maximum (> or = 90%) after 30 days, concomitant with an upregulation of their respective protein expression levels. In contrast, dipeptidylpeptidase IV labeling remained relatively constant. Backscattered electron imaging analysis in midstage (12 days postconfluence) monolayers demonstrated a lack of correlation between brush border membrane development and expression of each enzyme studied. Moreover, double immunostaining revealed that none of the other four hydrolases correlated directly with sucrase-isomaltase expression. Finally, immunodetection for the proliferation-associated antigen KI-67 revealed a transient mosaic pattern of proliferation which was inversely related to Caco-2 cell differentiation. These data indicate that enterocytic differentiation-related (as well as proliferation-related) gene expression in Caco-2 cells is regulated but uncoordinated at the cellular level, suggesting that an overall control mechanism is lacking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.