Abstract

Adaptive robot hands are typically created by introducing structural compliance either in their joints (e.g., implementation of flexure joints) or in their finger-pads. In this paper, we present a series of alternative uses of structural compliance for the development of simple, adaptive, compliant and/or under-actuated robot grippers and hands that can efficiently and robustly execute a variety of grasping and dexterous, in-hand manipulation tasks. The proposed designs utilize only one actuator per finger to control multiple degrees of freedom and they retain the superior grasping capabilities of the adaptive grasping mechanisms even under significant object pose or other environmental uncertainties. More specifically, in this work, we introduce, discuss, and evaluate: a) the concept of compliance adjustable motions that can be predetermined by tuning the in-series compliance of the tendon routing system and by appropriately selecting the imposed tendon loads, b) a design paradigm of pre-shaped, compliant robot fingers that adapt / conform to the object geometry and, c) a hyper-adaptive finger-pad design that maximizes the area of the contact patches between the hand and the object, maximizing also grasp stability. The proposed hands use mechanical adaptability to facilitate and simplify the efficient execution of robust grasping and dexterous, in-hand manipulation tasks by design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call