Abstract

Magnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear. To shed light on this, we employ an embedding method and ab initio quantum chemistry calculations to investigate the effects of surface doping on molecular properties. Our study unveils an unconventional chemical bonding at the interface between the FePc molecule and the N-doped graphene. This bonding interaction, stronger than non-covalent interactions, significantly modifies the magnetic anisotropy energy of the adsorbed molecule, consistent with experimental observations. These findings provide valuable insights into the electronic and magnetic properties of molecules on 2D substrates, offering a promising pathway for precise manipulation of molecular spin states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call