Abstract

In this manuscript, we discuss the emergence of p-wave superfluidity in a dipolar Fermi gas confined in a double layer array of parallel optical lattices in two dimensions. The dipole moments of the molecules placed at the sites of the optical lattices, separated a distance L and pointing in opposite directions produce an effective attractive interaction among them, except between those dipoles situated one on top of the other. Such interaction between dipoles is precisely the origin of the non-conventional superfluid state. We present the analysis for the ground state of the many-body system within the mean-field scheme. In particular, we study the stable regions, as a function of the system parameters, namely the effective interaction between dipoles and the filling factor n, for which the superfluid state can exist. Following the BKT scheme, we estimate the critical temperature of the superfluid state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.