Abstract
High-temperature unconventional superconductivity quite generically emerges from doping a strongly correlated parent compound, often (close to) an antiferromagnetic insulator. The recently developed dynamical vertex approximation is a state-of-the-art technique that has quantitatively predicted the superconducting dome of nickelates. Here, we apply it to study the effect of pressure in the infinite-layer nickelate SrxPr1−xNiO2. We reproduce the increase of the critical temperature (Tc) under pressure found in experiment up to 12 GPa. According to our results, Tc can be further increased with higher pressures. Even without Sr-doping the parent compound, PrNiO2, will become a high-temperature superconductor thanks to a strongly enhanced self-doping of the Ni dx2−y2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${d}_{{x}^{2}-{y}^{2}}$$\\end{document} orbital under pressure. With a maximal Tc of 100 K around 100 GPa, nickelate superconductors can reach that of the best cuprates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.