Abstract
We present the results of a study of the vortex lattice (VL) of the nickel chalcogenide superconductor TlNi2Se2, using small angle neutron scattering. This superconductor has the same crystal symmetry as the iron arsenide materials. Previous work points to it being a two-gap superconductor, with an unknown pairing mechanism. No structural transitions in the vortex lattice are seen in the phase diagram, arguing against d-wave gap symmetry. Empirical fits of the temperature-dependence of the form factor and penetration depth rule out a simple s-wave model, supporting the presence of nodes in the gap function. The variation of the VL opening angle with field is consistent with earlier reports of of multiple gaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.