Abstract
We present persistence length measurements on neurofilaments (NFs), an intermediate filament with protruding side arms, of the neuronal cytoskeleton. Tapping mode atomic force microscopy enabled us to visualize and trace at subpixel resolution photoimmobilized NFs, assembled at various subunit protein ratios, thereby modifying the side-arm length and chain density charge distribution. We show that specific polyampholyte sequences of the side arms can form salt-switchable intrafilament attractions that compete with the net electrostatic and steric repulsion and can reduce the total persistence length by half. The results are in agreement with present X-ray and microscopy data yet present a theoretical challenge for polyampholyte interchain interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.