Abstract

Studies of Raman lasers based on liquid nitrogen, gaseous hydrogen (stimulated Raman scattering by rotational and vibrational levels), and gaseous methane are reviewed. The studies selected for this review are of lasers excited by pulsed light from pumping sources with energies of 1 to 250 J, and which are designed in such a way that the results of the research can be scaled up. It has been shown that under certain conditions Raman lasers not only increase the brightness of laser light substantially but also become new sources of highpower coherent light in unexploited regions of the spectrum. Furthermore, in those cases in which the characteristics of the pump source—a neodymium laser—are close to their limiting values, and there is no need to raise the brightness, the use of a Raman laser as a final stage can increase the efficiency of the overall laser system by a factor of several units. This improvement opens up new possibilities for creating high-power laser systems with output energies greater than 1 kJ for physics research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.