Abstract

The photoinduced transition from the charge-density-wave (CDW) phase to the metallic phase in low-dimensional ladder-type cuprate Sr14Cu24O41 was investigated in terms of femtosecond time-resolved reflection spectroscopy. Following the melting of the CDW order just after photoexcitation, a Drude-like metallic state was formed with a large optical response and maintained for more than 50 ps. The Drude weight increased with increasing fluence with threshold behavior as a result of the cooperative interactions in the CDW domains and reached the value of the Drude weight in the hole-doped metallic compound of Sr4Ca10Cu24O41. These results indicate the photoinduced formation of a similar metallic state driven by hole doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.