Abstract

The unconventional photon blockade, which relies on the physical mechanism of quantum interference, is primarily investigated using a general master equation, where a weak nonlinearity must be presented in the system to achieve photon antibunching. In this study, we explore the unconventional photon blockade using an alternative master equation known as the two-photon absorption master equation, which is derived from the system and environment interaction via two-photon absorption. Specifically, we find that the unconventional photon blockade can be triggered in two-coupled cavities, where each cavity interacts with a two-photon absorption environment. Different from unconventional photon blockade via the general master equation, we show that the two-photon absorption acts as the weak nonlinearity, and this photon blockade corresponds to a large average photon number. To derive optimal conditions for achieving this blockade, we propose a non-Hermitian Hamiltonian method to describe the mode loss caused by the two-photon absorption. In addition, we highlight the distinctions between our proposal and other approaches for generating single-photon states based on two-photon absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.