Abstract

We reassess the phase diagram of high-pressure solid hydrogen using mean-field and many-body wave function based approaches to determine the nature of phase III of solid hydrogen. To discover the best candidates for phase III, density functional theory calculations within the meta-generalized gradient approximation by means of the strongly constrained and appropriately normed (SCAN) semilocal density functional are employed. We study eleven molecular structures with different symmetries, which are the most competitive phases, within the pressure range of 100 to 500~GPa. The SCAN phase diagram predicts that the $C2/c-24$ and $P6_122-36$ structures are the best candidates for phase III with an energy difference of less than 1~meV/atom. To verify the stability of the competitive insulator structures of $C2/c-24$ and $P6_122-36$, we apply the diffusion Monte Carlo (DMC) method to optimise the percentage $\alpha$ of exact-exchange in the trial many-body wave function. We found that the optimised $\alpha$ equals to $40 \%$, and denote the corresponding exchange and correlation functional as PBE1. The energy gain with respect to the well-known hybrid functional PBE0, where $\alpha = 25\%$, varies with density and structure. The PBE1-DMC enthalpy-pressure phase diagram predicts that the $P6_122-36$ structure is stable up to 210~GPa, where it transforms to the $C2/c-24$. Hence, we predict that the phase III of high-pressure solid hydrogen is polymorphic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.