Abstract

Synthetic nanographenes have been self-assembled from solution on the surface of nanometric channels of an alumina membrane template. By controlling the interplay between intermolecular and interfacial interactions, the molecules have been adsorbed either 'face-on' or 'edge-on' on the pore's surfaces, leading to the formation of columnar stacks in the latter case. Upon thermal treatment at high temperature, the molecular cross-linking of the columns has been triggered, transforming the delicate supramolecular arrangement into robust carbon nanotubes, with the graphitic planes at predetermined orientations with respect to the tube axis. Scanning force microscopy characterization of single nanotubes deposited from suspensions on mica showed that the nanotubes can self-assemble on flat surfaces adopting preferential alignments which reflect the threefold symmetry of the mica substrate. Kelvin probe force microscopy studies revealed that the nanotubes possess a surface potential much smaller than the work function of both graphite and conventional vacuum-processed nanotubes, providing evidence for their more confined electronic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call