Abstract

We report the experimental observation and theoretical explanation of an unconventional interplay between divalent Co and trivalent Y dopants, both of which incur oxygen vacancies in the CeO2 host that has predominantly tetravalent Ce cations. The Co dopant atoms were experimentally found to act as a switch that turns on the dormant effect of Y-modulated band-gap reduction. As revealed by density functional theory (DFT) calculations with structures verified by synchrotron-radiation x-ray measurements, a Co 3d band that hybridizes with Ce 4f band was lowered due to reduced O 2p repulsion arising from oxygen vacancies incurred by Y doping and therefore gave rise to the observed band-gap narrowing effect. Such switch-and-modulator scheme for band-gap engineering in nanocrystal materials can lead to important applications in environmental protection and solar energy harvesting technologies.

Highlights

  • We report the experimental observation and theoretical explanation of an unconventional interplay between divalent Co and trivalent Y dopants, both of which incur oxygen vacancies in the CeO2 host that has predominantly tetravalent Ce cations

  • Nanostructures of ceria are widely used in the development of solar cells and environmental protection catalysts[1,2,3]

  • The electronic properties of CeO2 may presumably be manipulated by defect engineering techniques that alter the oxygen vacancy concentration, such as doping impurity atoms with valences less than 4+

Read more

Summary

Introduction

We report the experimental observation and theoretical explanation of an unconventional interplay between divalent Co and trivalent Y dopants, both of which incur oxygen vacancies in the CeO2 host that has predominantly tetravalent Ce cations. We have attempted to modulate the band gap of CeO2 (ceria) nanocrystals by incorporating heterovalent dopant elements into the material.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.