Abstract

Iron-bearing dust is one of the main solid wastes in the metallurgical industry, and currently, it is mainly disposed of according to accumulation, which brings great environmental risks. Therefore, this paper proposes a method of preparing X-ray shielding materials by hot pressing using iron-bearing dust as the filler and polyimide resin powder as the matrix. A CT imaging system was used to test the X-ray shielding performance of the materials. The results demonstrated that shielding material I-95 had a shielding percentage of more than 95% at a tube voltage of 55 kVp and a tube current of 2 mA, and the thickness of the half-value layer was less than 0.68 mm. The shielding percentage and mass attenuation coefficient of the composites showed an increasing trend with increased filler addition, tube voltage, and tube current intensity, while the half-value layer thickness showed the opposite trend. Furthermore, the shielding percentage of composites with different fillers was affected by the voltage and hardly affected by the current variation. The dominant part of the shielding material interaction across the tested tube voltage range was photoelectric absorption. The prepared composite is a low-cost material and has high efficiency and is an ideal medical X-ray shielding material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call