Abstract

According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundary-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.