Abstract

While in condensed matter systems the constituents are well known, namely electrons, neutrons and protons, their interplay may give rise to unexpected states of matter. In this contribution we concentrate on strongly correlated electrons in one dimension driven out of equilibrium. This requires in principle, the solution of Schrodinger’s equation dealing with a space of states, whose dimension increases exponentially with the number of electrons. Implementing an algorithm that requires only polynomially increasing computational resources, namely the time-dependent density matrix renormalization group (t-DMRG), we show that an electron injected into the system, fractionalizes in several portions, some of them carrying charge but no spin, and others carrying the spin and partial charge, in spite of the electron being an elementary particle in isolation. The characterization of such a fractionalization of charge and spin was made possible by the access to HPC platforms with large memory processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call