Abstract

We present a design of multilayer core-shell nanostructures formed by introducing a dielectric gap shell layer between a silver core and a monolayer graphene shell for spectrally selective absorption enhancement in graphene based on an unconventional Fano effect. We demonstrate that this mechanism enables great flexibility in the choice of parameters of the proposed structures for the achievement of a relatively large and narrow-band absorption enhancement in graphene. Furthermore, we also demonstrate that such a spectrally selective absorption enhancement in graphene is highly tunable and can be optimized by controlling either the core or the shell parameters. These unique absorption properties may have applications in color-selective photodetectors and image sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.