Abstract

Most excitable cells maintain tight control of intracellular Ca(2+) through coordinated interaction between plasma membrane and endoplasmic or sarcoplasmic reticulum. Quiescent sarcoplasmic reticulum Ca(2+) release machinery is essential for the survival and normal function of skeletal muscle. Here we show that subtle membrane deformations induce Ca(2+) sparks in intact mammalian skeletal muscle. Spontaneous Ca(2+) sparks can be reversibly induced by osmotic shock, and participate in a normal physiological response to exercise. In dystrophic muscle with fragile membrane integrity, stress-induced Ca(2+) sparks are essentially irreversible. Moreover, moderate exercise in mdx muscle alters the Ca(2+) spark response. Thus, membrane-deformation-induced Ca(2+) sparks have an important role in physiological and pathophysiological regulation of Ca(2+) signalling, and uncontrolled Ca(2+) spark activity in connection with chronic activation of store-operated Ca(2+) entry may function as a dystrophic signal in mammalian skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.