Abstract

The authors perform unconstrained ear recognition using transfer learning with deep neural networks (DNNs). First, they show how existing DNNs can be used as a feature extractor. The extracted features are used by a shallow classifier to perform ear recognition. Performance can be improved by augmenting the training dataset with small image transformations. Next, they compare the performance of the feature-extraction models with fine-tuned networks. However, because the datasets are limited in size, a fine-tuned network tends to over-fit. They propose a deep learning-based averaging ensemble to reduce the effect of over-fitting. Performance results are provided on unconstrained ear recognition datasets, the AWE and CVLE datasets as well as a combined AWE + CVLE dataset. They show that their ensemble results in the best recognition performance on these datasets as compared to DNN feature-extraction based models and single fine-tuned models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.