Abstract

An unconstrained respiratory rate (RR) and heart rate (HR) monitoring system to be used during sleeping is proposed. The system consisted of eight polyvinylidene fluoride cable sensors, charge amplifiers and measuring software, together with an analogue-to-digital converter unit. The cable sensors were horizontally embedded into a textile sheet on a bed surface covering the upper half of the body. The digital infinite impulse response filters were constructed to extract cardiorespiratory signals from displacement of the sensors. The system software automatically searched the optimum sensor(s) based on the power of the respective filter outputs. Then, the system obtained the 5 s average HR and 15 s average RR by measuring the intervals between the peaks of the respective autocorrelation functions of the filtered output. If the subject changed his posture, the system captured the image of the body position as a time stamp using a CCD camera. To show the validity of this method, the HR and RR obtained by this monitor were compared with those simultaneously measured using respiratory flow and an electrocardiogram. The results showed that the mean frame-by-frame difference ranged from -1.2 to 0.2 beats min(-1) for the HR and, for RR, ranged from -0.8 to 1.4 breath min(-1) during the short-term recordings. Similar differences were obtained during the first 2 h of overnight recordings. The proposed system is feasible for the combined long-term monitoring of a person's RR and HR with sleep posture changes and may be helpful for practical use in the home.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.