Abstract

Motion compensation constitutes a challenging issue in minimally invasive beating heart surgery. Since the zone to be repaired has a dynamic behaviour, precision and surgeon's dexterity decrease. In order to solve this problem, various proposals have been presented using ℓ2-norm. However, as they present some limitations in terms of robustness and efficiency, motion compensation is still considered an open problem. In this work, a solution based on the class of ℓ1 Regularized Optimization is proposed. It has been selected due to its mathematical properties and practical benefits. In particular, deformation is characterized by cubic B-splines since they offer an excellent balance between computational cost and accuracy. Moreover, due to the non-differentiability of the functional, the logarithmic barrier function is used for generating a standard optimization problem. Results have provided a very good tradeoff between accuracy and efficiency, indicating the potential of the proposed approach and proving its stability even under complex deformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.