Abstract

A collection of results is presented regarding the consistency, stability and accuracy of operator split methods and product formula algorithms for general nonlinear equations of evolution. These results are then applied to the structural dynamics problem. The basic idea is to exploit an element-by-element additive decomposition of a particular form of the discrete dynamic equations resulting from a finite element discretization. It is shown that such a particular form of the discrete dynamic equations is obtained when velocity and stress are taken as unknowns. By applying the general product formula technique to the element-by-element decomposition, unconditionally stable algorithms are obtained that involve only element coefficient matrices. The storage requirements and operation counts are comparable to those of explicit methods. The method places no restriction on the topology of the finite element mesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.