Abstract

In this paper, unconditionally stable formulations of the nearly perfectly matched layer are presented for truncating linear dispersive finite-difference time-domain (FDTD) grids. In the proposed formulations, the Crank-Nicolson and bilinear frequency-approximation techniques are used to obtain the update equations for the field components in linear dispersive media. A numerical example carried out in a one-dimensional Lorentz dispersive FDTD domain is included and it has been observed that the proposed formulations not only give accurate results, but also completely remove the stability limit of the conventional FDTD algorithm

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.