Abstract

Our main result shows that subspaces of L1([0, 1]) on which the blow-up operators act compactly are isometric to dual spaces, and their natural predual belongs to the Banach-Mazur closure of quotient spaces of \(c_0({\mathbb{N}})\). Related general results are shown for subspaces X of \({\mathcal{C}_{0}} (\Omega)\) or of reflexive Kothe function spaces, which imply that when X consists of smooth functions it embeds into a Banach space with an unconditional basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.