Abstract

Wheat thousand kernel weight (TKW) is a complex trait, and is largely controlled by several kernel traits, including kernel length (KL) and kernel width (KW). In order to reveal the genetic relationship between TKW and these kernel traits (KW and KL) as accurate as possible, we applied both unconditional and conditional mapping analyses to three distinct genetic populations, one DH population and two RIL populations. This report describes the identifications of 36 unconditional and conditional additive QTLs and 30 pairs of unconditional and conditional epistatic QTLs, all of which are closely associated with TKW. While the conditional additive locus Qtkw1B, detected in the RIL2 population, exhibited the largest contribution, explaining 14.12% of TKW variance, the unconditional epistatic QTLs Qtkw3A-2/Qtkw5B.1, detected in the DH population, accounted for 11.95% of phenotypic variance. This study also showed that, compared with unconditional mapping, conditional mapping resulted in very different numbers and different extent of effects of additive and epistatic QTLs that were associated with TKW when TKW was conditioned on kernel traits (KW and KL). These data strongly suggest that KW and KL indeed play a significant role in determining TKW. Furthermore, we demonstrated that the effects of the 25 additive QTLs for TKW were either entirely or largely determined by KW, while the effects of the other 25 additive QTLs for TKW were either entirely or largely affected by KL. We conclude that the conditional mapping can be useful for a better understanding of the interrelationship between the yield contributing traits at the QTL level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call