Abstract

Monoterpene cyclases catalyze the divalent metal ion-dependent conversion of the acyclic precursor geranyl pyrophosphate to a variety of monocyclic and bicyclic monoterpene skeletons. Examination of the kinetics of inhibition of cyclization by the pyrophosphate ester of ( E)-4-[2-diazo-3-trifluoropropionyloxy]-3-methyl-2-buten-1-ol, a photolabile structural analog of the substrate, using a partially purified preparation of geranyl pyrophosphate:(+)-pinene cyclase and geranyl pyrophosphate:(+)-bornyl pyrophosphate cyclase from common sage ( Salvia officinalis) evidenced (under dark conditions) strictly uncompetitive inhibition with K i ′ values of 3.2 and 4.7 μ m, respectively. These values are close to the corresponding K m values for the substrate with these two enzymes. This novel property of the substrate analog was also examined in the presence of two other inhibitors which bind to different domains of the cyclase active site (inorganic pyrophosphate and a sulfonium ion analog of a cyclic carbocationic intermediate of the reaction sequence (dimethyl-(4-methylcyclohex-3-en-1-yl)sulfonium iodide)) in order to address the mechanistic origins of the uncompetitive inhibition of cyclization. It was not possible, however, to rule out either an induced-fit mechanism or a sequential binding mechanism since the substrate is recognized by at least two binding domains and because direct examination of the effects of binding on cyclase conformation is currently not feasible. The substrate analog, although photoactive, did not give rise to light-dependent enzyme inactivation of greater magnitude than that obtained from ultraviolet light alone. The unusual behavior of the analog was attributed to intramolecular interaction of the electron-rich carbonyl group of the diazoester with the required divalent metal ion that is chelated by the pyrophosphate group. A photostable analog of geraniol that resembled the photoactive substrate analog in bearing a carbonyl function at C6 (6-oxo-3,7-dimethyloct-2( trans)en-1-ol) was prepared. Following foliar application to rapidly growing sage plants, this analog was seemingly activated to the corresponding pyrophosphate ester in vivo and selectively inhibited the activity of several cyclases in this tissue as evidenced by diminished production of the corresponding monoterpene end products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call