Abstract

The author gives the complete relativity effects as applied to a ground-based receiver's local coordinate time. The current Global Positioning System (GPS) relativity corrections were based on an earth-centered inertial reference frame. The derivation assumed that the receiver obtained inertial GPS coordinate time from the satellites. However, the receiver has been treated tacitly as being stationary in the inertial frame. The problem is that relativity effects in GPS are compensated only for the moving satellites relative to the frame. It is shown that relativity effects for a ground-based receiver include gravity and earth rotation. Airborne GPS receivers have larger effects, and spaceborne GPS receivers have the worst uncompensated relativity effects. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call