Abstract

Summary The topology of knots and links can be studied by examining colorings of their diagrams. We explain how to detect knots and links using the method of Fox tricoloring, and we give a new and elementary proof that an infinite family of Brunnian links are each linked. Our proof is based on the remarkable fact (which we prove) that if a link diagram cannot be tricolored then it must be linked. Our paper introduces readers to the Fox coloring generalization of tricoloring and the further algebraic generalization, called a quandle by David Joyce.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.