Abstract
In the field of cochlear implantation, artificial/physical models of the inner ear are often employed to investigate certain phenomena like the forces occurring during implant insertions. Up to now, no such models are available for the analysis of diffusion processes inside the cochlea although drug delivery is playing an increasingly important role in this field. For easy access of the cochlea along its whole profile, e.g., for sequential sampling in an experimental setting, such a model should ideally be longitudinal/uncoiled. Within this study, a set of 15 micro-CT imaging datasets of human cochleae was used to derive an average representation of the scala tympani. The spiral profile of this model was then uncoiled along different trajectories, showing that these trajectories influence both length and volume of the resulting longitudinal model. A volumetric analysis of the average spiral model was conducted to derive volume-to-length interrelations for the different trajectories, which were then used to generate two tubular, longitudinal scala tympani models with volume and length properties matching the original, spiral profile. These models can be downloaded for free and used for reproducible and comparable simulative and experimental investigations of diffusion processes within the inner ear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.