Abstract

We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.

Highlights

  • A critical step in bacterial infection is the attachment of the bacterium to a host surface, which is often mediated by specific interactions between adhesive proteins called adhesins and their target receptors on host tissues

  • Because the level of force applied to FimH–mannose bonds is critical to the adhesion behavior of E. coli, it is important to understand how the force acting on the bacterium is transmitted to the bonds

  • The cantilever of an atomic force microscope (AFM) functionalized with monomannose (1M) or trimannose (3M) was brought into contact with surface-immobilized bacteria by applying a pushing force of 50–200 pN

Read more

Summary

Introduction

A critical step in bacterial infection is the attachment of the bacterium to a host surface, which is often mediated by specific interactions between adhesive proteins called adhesins and their target receptors on host tissues. This attachment usually occurs in the presence of flowing bodily fluids, which create drag forces on bacteria and their anchoring adhesins. It might be expected that high flow would wash off bound bacteria, we have previously shown that forces generated by fluid drag on bacteria enhance FimH-mediated bacterial attachment to cells and surfaces [1,2,3]. Because the level of force applied to FimH–mannose bonds is critical to the adhesion behavior of E. coli, it is important to understand how the force acting on the bacterium is transmitted to the bonds

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.